A methodology for snow data assimilation in a land surface model
نویسندگان
چکیده
[1] Snow cover has a large influence on heat fluxes between the land and atmosphere because of its high albedo and insulating thermal properties. Hence accurate snow representation in coupled land-ocean-atmosphere global climate models has the potential to greatly increase prediction accuracy. To this end, a one-dimensional extended Kalman filter analysis scheme has been developed to assimilate observed snow water equivalent into the NASA Seasonal-to-Interannual Prediction Project (NSIPP) catchment-based land surface model. This study presents the results from a set of data assimilation ‘‘twin’’ experiments using an uncoupled version of the land surface model. First, ‘‘true’’ snow states are generated by spinning-up the land surface model for 1987 using an observationconstrained version of the European Centre for Medium-Range Weather Forecasts (ECMWF) 15-year Re-Analysis (ERA-15) data set for atmospheric forcing. A degraded 1987 simulation was then made by initializing the model with no snow on 1 January 1987. A third simulation assimilated the synthetically generated snow water equivalent ‘‘observations’’ from the true simulation into the degraded simulation once a day. This study illustrates that by assimilating snow water equivalent observations, which are readily available from remote sensing satellites, other state variables (i.e., snow depth and temperature) can be retrieved and effects of poor initial conditions removed. Runoff and atmospheric flux predictions are also improved.
منابع مشابه
Assimilation of MODIS Snow Cover Fraction Observations into the NASA Catchment Land Surface Model
The NASA Catchment land surface model (CLSM) is the land model component used for the Modern-Era Retrospective Analysis for Research and Applications (MERRA). Here, the CLSM versions of MERRA and MERRA-Land are evaluated using snow cover fraction (SCF) observations from the Moderate Resolution Imaging Spectroradiometer (MODIS). Moreover, a computationally-efficient empirical scheme is designed ...
متن کاملAccounting for Pliem-Xiu and NOAH Module to Simulate Dust: A Case of Western Areas of Ahwaz
Extended abstract 1- INTRODUCTION In the arid and semi-arid areas of Asia, dust storms occur frequently. Much progress has been made in the monitoring modeling and prediction of Asian dust storms. Dust emission is caused by wind erosion in the sensitive areas. Wind erosion is described as the transportation of soil particles by means of the wind. Soil Surface moisture is one of the most i...
متن کاملAssimilation ofMODIS snow cover through the Data Assimilation Research Testbed and the Community Land Model version 4
To improve snowpack estimates in Community Land Model version 4 (CLM4), the Moderate Resolution Imaging Spectroradiometer (MODIS) snow cover fraction (SCF) was assimilated into the Community Land Model version 4 (CLM4) via the Data Assimilation Research Testbed (DART). The interface between CLM4 and DART is a flexible, extensible approach to land surface data assimilation. This data assimilatio...
متن کاملSeasonal variations of hydrological cycle components in the Mississippi River basin from a MAPS version with snow and frozen soil physics
A coupled atmospheric/land-surface model covering the conterminous United States with an associated 1-hour atmospheric data assimilation cycle, the Mesoscale Analysis and Prediction System (MAPS), has been improved to include snow and frozen soil physics. The new aspects of the land-surface model are described in this paper, along with detailed one-dimensional (1-D) tests. These tests show that...
متن کاملAssimilation of GRACE Terrestrial Water Storage Observations into a Land Surface Model for the Assessment of Regional Flood Potential
We evaluate performance of the Catchment Land Surface Model (CLSM) under flood conditions after the assimilation of observations of the terrestrial water storage anomaly (TWSA) from NASA’s Gravity Recovery and Climate Experiment (GRACE). Assimilation offers three key benefits for the viability of GRACE observations to operational applications: (1) near-real time analysis; (2) a downscaling of G...
متن کامل